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VARIATIONAL PARAMETER ESTIMATION FOR A 
TWO-DIMENSIONAL NUMERICAL TIDAL MODEL 
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Mathematics Department, Simon Fraser University, Burnaby. B.C. VJA IS6. Canada 

SUMMARY 
It is shown that the parameters in a two-dimensional (depth-averaged) numerical tidal model can be 
estimated accurately by assimilation of data from tide gauges. The tidal model considered is a semi- 
linearized one in which kinematical non-linearities are neglected but non-linear bottom friction is included. 
The parameters to be estimated (bottom friction coefficient and water depth) are assumed to be position- 
dependent and are approximated by piecewise linear interpolations between certain nodal values. The 
numerical scheme consists of a two-level leapfrog method. The adjoint scheme is constructed on the 
assumption that a certain norm of the difference between computed and observed elevations at the tide 
gauges should be minimized. It is shown that a satisfactory numerical minimization can be completed using 
either the Broyden-Fletcher-GoldfarbShanno (BFGS) quasi-Newton algorithm or Nash's truncated 
Newton algorithm. On the basis of a number of test problems, it is shown that very effective estimation of the 
nodal values of the parameters can be achieved provided the number of data stations is sufficiently large in 
relation to the number of nodes. 

KEY WORDS Numerical tidal model Data assimilation Parameter estimation Optimal control 

1. INTRODUCTION 

The earliest numerical tidal models have been based on the vertically integrated continuity and 
momentum equations, and yield values of the surface elevation and depth-averaged velocity 
components. While these models have been, to some extent, superceded in the last fifteen years by 
full three-dimensional models, which are clearly superior for problems involving wind-driven and 
density-gradient-driven flows, they remain of considerable usefulness for tidal flows, for which the 
fluid velocity is not strongly dependent on the vertical co-ordinate, and for algorithms designed 
for small computers. Reviews of much of the work on numerical tidal models are given by Liu and 
Leendertse,' and Nihoul and Jamart.' 

The parameters in the two-dimensional models are usually the water depth and the bottom 
friction coefficient, both of which are in general position-dependent. Traditionally, numerical 
tidal models are 'tuned' by adjusting these parameters so as to make the predicted surface 
elevations at certain tide stations agree as closely as possible with their observed values. In recent 
years systematic techniques of such data assimilation based on optimal control methods have 
been developed, particularly in the field of meteorology. These methods were originated by 
Sasaki3s4 and Marchuk5 and have more recently been developed and applied by Lewis and 
Derber,6 Le Dimet and Talagrand,' Harlan and OBrien,' H~f fman ,~  Lorenc,lo*'l Talagrand 
and Courtierl2 and Courtier and Talagrand.I3 Recent reviews of much of this work are given by 
Lorenc," Navon14 and Le Dimet and Navon." Similar methods have also been used by 
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Chavent et a l l 6  and Carrera and Neumann” to estimate the parameters in models of flow in 
porous media. 

In the field of oceanography such optimal control methods have also recently come into use. 
Bennett and McIntosh’* and Prevost and Salmon” have applied the weak-constraint formalism 
of Sasaki4 to a tidal flow problem and a geostrophic flow problem, respectively. More recently, 
the strong-constraint formalism has been used by Panchang and OBrien’O to determine the 
bottom friction coefficient in a problem of flow in a channel using some earlier experimental 
results. Smedstad” and Smedstad and OBrien” have extended this approach and used it to 
determine the effective phase speed in a model of the equatorial Pacific Ocean based on 
observations of sea level. Yu and O’Brien23 have used a similar method to estimate the eddy 
viscosity and surface-drag coefficient from the measured velocities of a wind-driven flow. 

In a previous paper, Das and Lardner24 have extended the work of Panchang and OBrien to 
estimate the position-dependent drag and depth in a sectionally integrated model of flow in a 
channel by assimilation of periodic tidal data and have compared several minimization al- 
gorithms. LardnerZ5 has used similar variational techniques to estimate the open boundary 
conditions in a two-dimensional tidal model. The aim of the present paper is to combine and 
extend the work in these two papers in order to develop the technique of parameter estimation in 
the two-dimensional case. 

The variational method involves minimizing a certain functional which consists of a norm of 
the difference between the computed and measured values of surface elevation at the tide gauges 
within the water body. An algorithm is obtained, via the so-called adjoint equations, for 
construction of the gradient of this functional with respect to the parameters. Having determined 
the gradient, the minimization can be performed using any of a number of numerical optimization 
algorithms. Here we have used both the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi- 
Newton algorithm as contained in the CONMIN subroutine of Shanno and Phua26 and Nash’s 
truncated Newton alg~ri thm.~’  Descriptions of these two methods are given by Navon and 
Legler,28 and Nash and Nocedal.” 

In Section 2 we describe the numerical tidal model that we have used. In Section 3 the 
corresponding discrete adjoint is constructed and the parameter equations derived. In Section 4 
the results of several numerical tests are given. Section 5 summarizes the results and conclusions. 

2. THE NUMERICAL TIDAL MODEL 

2.1. Basic equations 

We let x, y be the horizontal co-ordinates and t be the time. The undisturbed depth of the water 
at position (x, y) is denoted by h(x ,  y), the elevation of the free surface above its undisturbed 
position by [ ( x , y , t )  and the depth-averaged components of water velocity in the x- and y- 
directions by u(x ,  y, t )  and u ( x ,  y, t). 

As in most tidal models, we make the usual hydrostatic approximation, assume the fluid to be 
incompressible and of uniform density, and neglect horizontal shear stresses. We shall also neglect 
the advective terms in the momentum equations, which in most tidal flows are quite small. Rather 
than u and u, we shall use the components of volume transport, p = ( h + [ ) u = h u  and 
q = ( h  + c ) u  x hu as primary variables. Then the depth-integrated equations of continuity and 
momentum can be written as 

i t  + P, + q y  = 0, 
pt -fq + ghi, + dX) = 0, 
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wheref is the Coriolis parameter and dX), dY) are the components of bottom friction divided by 
water density. These latter are assumed to have the usual quadratic form, 

(dX), dY)) = khZJ(u2 + v2)(u ,  U) = kJ(p2 + q 2 ) ( p ,  q), 
where k(x ,  y) is a bottom friction coefficient. The factor hZ is included for convenience. The 
equations can then be re-expressed as follows: 

c l+Px+qy=O,  (1) 

(2) 

(3) 

PI -f4 + s h L +  kPJ(PZ + 4 2 )  = 0, 

41 + f P  + ghC, + kq  J ( P 2  + q 2 )  = 0. 
The boundary conditions on a coastal boundary are taken to be such that the normal 

component of vector ( p ,  q) is zero. On an open boundary, we assume that the surface elevation c is 
known. With these boundary conditions plus the initial values of c, p and q, equations ( 1 H 3 )  form 
a well-posed boundary value problem. 

2.2. Finite difference approximations 

The numerical scheme is based on a leapfrog method with staggered grids in both space and 
time. The spatial grid is identical with an Arakawa C-grid, but the variables [ and ( p ,  q) are taken 
at alternating half-steps in the time direction. At time step j ,  the value of c at grid point (m, n) is 
denoted by [A,,, while at time stepj+$, the value of p at grid point (m+$, n) is denoted by pL,n  
and the value of q at grid point (m, n + 3) is denoted by qi,n. This scheme has previously been used 
for the tidal equations by Lardner and Smo~zynski.~’ 

The finite difference approximation to equation (l), centred at the space-time grid point 
(m, n, j + $), is then 

where Ax, Ay and At are the spatial and temporal grid spacings. Since all differences are centred, 
the local truncation error in this approximation is second order. Equation (4) may be solved 
explicitly for I;:: 

The finite difference approximations to equations (2) and (3) are as follows: 

Equation (2) centred at the space-time point (m+*,  n , j+  1). 

Equation (3) centred at the space-time point (m, n + $ , j +  1): 

Equations ( 5 )  and (6) may be solved explicitly for p c ;  and qck,  respectively. Here we use the 
notation 

rL,n = J [ ( ~ i , n ) ~  + ( q i . n Y ~ r  s i , n  = J C ( P L , ~ ) ~  + ( 4 L , n ) Z ~ .  (7) 
In these expressions as well as in the Coriolis terms we use the usual four-point averages, 



316 S. K. DAS AND R. W. LARDNER 

In addition, the notation 

(9) 

is used. This denotes the fact that on even time steps equation ( 5 )  is solved first for pet, while on 
odd steps equation (6) is solved first for qx., and in each case the latest available values of the 
other variable are used in the Coriolis terms. It can be shown that this treatment of the Coriolis 
terms has second-order truncation error and also places an insignificant stability restriction on the 
time step. 

In the discretizations (5) and (6), the bottom friction terms are treated semi-implicitly in order 
to improve stability. The implicitness parameter is denoted by a and, in practice, we have taken 
a = 4, which gives a centred average for this factor. 

A small but significant change must be made in the appropriate one of the averages (8) when the 
velocity point (m, n) is adjacent to an open boundary. A typical situation is illustrated in Figure 1. 
In forming &,, n, qm + 1, I and qm + - are not available, so only a one-sided average can be used: 
&,n = $(q&,. + qL,n- l). Similar one-sided averages occur adjacent to any open boundary. 

Boundary conditions are imposed on the discrete equations in the usual way for an Arakawa 
C-grid (see, for example, Reference 31). The grid is positioned so that coastal boundaries that run 
in the y-direction pass through p points with the values of p at such points being set equal to zero, 

m,n { j + l  
i f j  is odd, 

qLVn i f j  is even. 
q [ j ~  = q m , n  p i , ,  if j is odd, { '  pjmt.' i f j  is even, 

p21n = 

I 
1 - 0 

I qm,n 

- 0 

I 58-1 

$ 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 

i, 
I 
I 
I 
I 
I 
1 i qm+ I. n - 1 

8 

open b~unm ! 
8 
I 

Figure 1. Example of a p point adjacent to a right-hand open boundary. For g,,,. only a two-point average of qm." and 
&..-I is used 
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and coastal boundaries that run in the x-direction pass through q points with the corresponding 
values of q being set equal to zero. 

Open boundaries are positioned so as to pass through C points, at which the values of [ are set 
equal to the prescribed elevations. Let the open boundary points be denoted by (ml, nI), where 
1 = 1,2, . . . , L. In general, at time step j the open boundary condition is taken as 

M 

i =  1 
C i z , n l  =a,, ,+ C ai,Icos(WAt-4i,I), (10) 

where {mi: i = 1, . . . , M} are the angular frequencies of the tidal constituents that are included in 
the model and {ai,,, $i,l: i = l ,  . . . , M )  the amplitudes and phases of these constituents at the 
boundary point 1. 

Finally, as is usual with numerical tidal models, flat initial conditions are used, that is, 

C:,n = P : , n  = q : , n  =O. 

3. THE ADJOINT NUMERICAL MODEL 

3.1. Minimum principle 

We suppose that the values of surface elevation Z i  are observed at certain tide stations labelled 
by d = 1,2, . . . , D and for time steps j = I + 1, . . . , J. The start-up interval consisting of steps 
j =  1,2, . . . , I is imposed to allow the transients arising from the initial conditions to become 
sufficiently small, so that the computed solution should agree with the observed values to within 
some tolerance in the window I + 1 5J I J. 

The tide stations may coincide with grid points but, more generally, we suppose that the 
corresponding computed values of elevation at station d are given by Ern,, Bm,n,dCi ,n ,  where 
Bm.n,d are appropriate interpolation coefficients. The discrepancy in the computed value at station 
d and stepj is then 

We suppose that the parameters in the model must be chosen so as to minimize the objective 
function 

where the quantities Kd are the respective weights given to the observational discrepancies at the 
different data stations. 

Introducing Lagrange multipliers, A A , n ,  p i , n  and v L , ~  for the constraints (4H6), we have the 
following expression for the first variation of F: 

D J 
S F =  C K d  C Bm,n.d  Sc’, .n 

d = 1  j = I + 1  m.n 
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Here S,, S, and S, denote the sets of index pairs (m, n) at which equations (4), (5) and (6), 
respectively, are imposed. These sets do not include points on either closed or open boundaries. 

Bearing in mind the grid points at which the difference approximations (4H6) are centred, we 
see that the multipliers 1, p and v are discretized at the same spatial grid points as t;, p and q, 
respectively. 

After transforming certain of the summation indices in the last three terms of SF and taking 
account of the boundary and initial conditions, we can rewrite 6 F  in the form 

where U ,  V and W are certain coefficients to be given below and 

The quantities r i , ,  and s A , ~  are defined in equation (7). The details of this transformation are 
given by Lardner.25 In order to reduce SF to this form, it is necessary to impose the final 
conditions that I,:,? = pi:: = vi'j; = 0 and the boundary conditions that li,n = 0 at every open 
boundary point, p;,n = 0 at every coastal boundary that runs in the y-direction and vim,. = 0 at 
every coastal boundary running in the x-direction. 

Setting the coefficients of the variations SYi, , ,  G P ~ , ~  and Sq',,, equal to zero, we obtain the 
equations 

D 

d =  1 
Wi, , ,  0' 1 K,j Bm9n9d A i  = 0, (m, n)ESc, 

ui,n = 0, (my n ) ~ S p ,  

J'i,n = 0, (m, n)ES,,  
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where Oj= 1 if I + 1 I j l J ,  and @ =  0 if O l j s I .  These equations, together with the above 
boundary and final conditions, form the adjoint boundary value problem. In full they have the 
following forms: 

Here 

where 

(21) 
if j is odd, 

m,n {o i f j  is even, v’,,.+ v’,t,’ ifj is even. 

The averages pi,n and tji , ,n are identical to the four point averages defined in equations (8) except 
at velocity points that are adjacently parallel to an open boundary. The four exceptional 
configurations are illustrated in Figure 2, and in these cases the new averages are defined as 
follows: 

( I>  = , 
v m , n  { O p ( j )  = P m , n  j +pj+l  m . n  if.j is odd, 

Case A: FA,,, = 

Case B: 

Case C: = t (vi , , ,  + vi,+ l , n  + 2vi,,,- 1 + 2 v i , + l , n -  1 ); 

Case D: ;Asn = ~ ( 2 v ~ , , + 2 v ~ + , , , + v ~ , , ~ ,  + V A + ~ , ~ - ~ ) ;  
Otherwise: jii,.n Ci,,n = V ; , ~ .  

+ 2 d -  1 , n  + P L , n +  1 + 2PA- l , n +  1); 

- 1 , n  +2P’,,n+ 1 + P A -  1, n +  1 ); FA,,, = a(2pA.n + 

_.  

At velocity points adjacent and perpendicular to an open boundary, such as (m++, n) in Figure 2, 
case (B), the four point averages (8) can be used provided the values of p or v on the open boundary 
itself are maintained at zero. 

Equations (17H19) may be stepped explicitly backwards in time. I f j  is odd, equation (18) can 
be solved explicitly for pi , , , ,  (m, n)d, and then equation (19) explicitly for v L , ~ ,  (m, n)d, .  If j is 
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m - l , n + l  ; '  
i-• 
I 

I 
I 
0 - 0  

I 
I ' m -  1.n 

I 

Figure 2. The four cases of p and v points near open boundaries for which the averages b,,,. and C,,," differ from the usual 
averages p,,," and V,,," 

even, the order in which (1 8) and (19) are solved is reversed. Then equation (1 7) can be solved 
explicitly for A;;:, (m, n)ESc.  

3.2. Parameter determinations 

Having satisfied the adjoint system of equations, only the last two sums in equation (14) 
remain. We suppose that the quantities km,n and hm,n are expressed, respectively, in terms of some 
reduced parameter sets { p A :  A = 1, . . . , N} and { p A :  A = N + 1, . . . , 2 N }  by expressions of the 
form 

N N 

A =  1 A =  1 
km,n=  C M m . n . A  P A ,  h,,,= Mm,n,A p N + A .  

The simplest form would be the piecewise linear approximations within triangular elements, 
with ( p A }  being the nodal values, and this is the form we have used in the numerical tests to be 
described below. Then we obtain 

N 

6 F =  1 { F A ~ P A + F N + A ~ P N + A } ,  
A =  1 

where 
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These expressions provide the components of the gradient of F in the reduced parameter space. 
Das and LardnerZ4 have examined a number of minimization algorithms for parameter 

estimation in the case of unidirectional flow in a narrow channel. They have compared the 
conjugate-gradient method with or without Beale restarts, the secant method, the BFGS quasi- 
Newton method and simple direct iteration along the direction of steepest descent, and have 
found that the BFGS algorithm is, in most cases, about as fast as or faster than the other methods 
and has a much larger domain of convergence. Among these methods, therefore, we have here 
used only BFGS algorithm in the version contained in the subroutine CONMIN of Shanno and 
Phua.26 We have also experimented with the truncated Newton algorithm of N a ~ h . ’ ~  Descrip- 
tions of these methods are given by Navon and Legler,28 and Nash and N ~ c e d a l . ~ ~  

In the problems examined, in which the dimension of the parameter space was relatively small 
(not more than 20), there was no significant difference between these two algorithms, either in the 
accuracy of the estimations or in the number of iterations (that is, gradient eva1uations:needed for 
convergence. 

4. NUMERICAL TESTS 

A number of numerical examples have been used to test the effectiveness of the method described 
in Section 3. The model region consists of a rectangular gulf, open along one side. The dimensions 
of the gulf were taken as 15 grids in the x-direction by 14.5 grids in the y-direction with the grid 
size being 40 OOO m. The open boundary points are (m, 16), 2 I m I 16. The boundary condition 
on the open boundary was taken as [i, 16 = sin(ojAt), where o = 2 4 T  and T =  12 h. The time 
step used was 360 s and the value of the Coriolis parameter wasf= 1.22 x 

In each case, the ‘observed’ solution was computed using the algorithm described in Section 2. 
During this computation, the program was allowed to run for a large number of steps (in practice 
1440, or six days of real time) until the solution settled down to a periodic form, accurate to at 
least six digits. The values from the final period were used as observed values for the parameter 
estimation. 

For the inverse computation, the start-up interval I was chosen shorter than that used to 
compute the observed solution, but was sufficient to provide a solution that is periodic in the last 
period to within errors of at most 0.02%. (In practice, Z=840 was found sufficient, and the 
window of observation was from step 841 to 960.) On the initial iteration, the parameters to be 
estimated were given certain ‘guessed’ values. 

In each case, the data stations were given equal weights, which can be taken arbitrarily, and the 
value K ,  = At - was used in order to simplify equation (17). 

The parameters were estimated using linear triangular elements with a total of four, five or nine 
nodes. The arrangement of the elements in each case is shown in Figure 3. In the first sets of 
results quoted below, the number of data stations was chosen rather arbitrarily as 20 for the four- 
node cases, 5 for the five-node cases and 24 for the nine-node cases. Subsequently, results of tests 
with smaller numbers of data stations will be given. 

In the first series of tests, the parameters were given constant values, h = 6 5 m  and 
k=025 x 10- m-’. In each case, initial guesses of h=60 m and k=0.20 x m-’ were used, 
and a tolerance (the norm of the gradient of F at which the iterations stop) was set at The 
results obtained using the BFGS algorithm are as follows. Comparable results were obtained 
using Nashs truncated Newton algorithm. 

in 51 iterations. 
The estimated values of the depth at the nodes were between 64.993 and 65.010, and the estimates 
of friction coefficient between 0.24990 x lo-’ and 0.25006 x 

With four nodes, the value of F was reduced from 0.52 x lo-’ to 0.1 1 x 
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Coast 
4 1 . . 

. 

coast 
Open~oundary 

#............... 
(a) Four Nodes 

............. ............. ............. ............. ............. ............. .............. ............. ............. ............. ............. 

.............. 

................. 
(b) Five Nodes 

Open Boundary 

I............... 

(c) Nine Nodes 

Figure 3. The finite element triangulations used for four, five and nine nodes. The points indicated by dots are the (m, n) 
grid points at which c,,,“ is specified and parameter values assigned via equation (23) 

With five nodes, F was reduced from 0.19 x 10- to 0.77 x lo-’ in 66 iterations. The estimated 
values of the depth at the nodes were between 64.890 and 65.019, and the estimates of friction 
coefficient between 024952 x lo-’ and 0.25070 x lo-’. 

in 90 iterations. The estimated 
values of the depth at the nodes were between 64.862 and 65.112, and the estimates of friction 
coefficient between 0.24903 x lo-’ and 0.25161 x 

In the second series of tests, the parameters were given values that increased linearly with rn + n 
from smallest values of h=33  m and k=0.14 x lo-’ m-’ to largest values of h=89 m and 
k=0.42x 10-5m-2.  In each case, initial guesses of constant values, h=60m and 
k=0.20 x lo-’ m-’, were used, and the tolerance lo-’ as before. 

The results obtained using the BFGS algorithm are as follows. With four nodes, the value of F 
was reduced from 0.31 to 0.10 x in 51 iterations. With five nodes, F was reduced from 0-13 to 
018 x lo-’ in 70 iterations. With nine nodes, F was reduced from 0.22 to 0.39 x in 118 
iterations. The estimated and true values of the parameters at the nodes for the three cases are 
given in Table I. It can be seen that the algorithm converges to good estimates in each case, in 
spite of the initial guesses being very far out at some of the nodes. The errors are larger for nine 
nodes than for four or five, but are still reasonably small. 

In similar parameter estimations for flow in a one-dimensional channel, Das and LardnerZ4 
found also that good values were obtained provided that the number of data stations was large 
enough. In their case, for both linear and quadratic bottom friction, joint estimates of depth and 

With nine nodes, F was reduced from 039 x lo-’ to 0.18 x 
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Table I. Estimated and true parameters with four, five or nine nodes 

Node Friction coefficient ( x  lo5) Depth 
~~ 

m n Estimated True Estimated True 

2 2 0.14001 0.14 32.999 33 
16 2 0.27998 0.28 61400 61 
16 16 0.42001 0.42 89.000 89 
2 16 0.27999 0.28 61-000 61 

2 2 014000 0.14 32,994 33 
16 2 028000 028 60.993 61 
9 9 028004 0.28 61.021 61 
2 16 0.28005 0.28 61000 61 

16 16 042004 042 88.984 89 

2 
9 

16 
9 

16 
16 
2 
9 
2 

2 
9 

16 
2 
9 
2 
9 

16 
16 

014039 
027954 
0 4  1949 
021054 
035190 
027387 
020991 
0.35064 
027963 

0 14 
0.28 
0.42 
0-2 1 
0.35 
0.28 
0.2 1 
0 3 5  
0.28 

32.992 
61.007 
88.994 
46.972 
74.963 
61.069 
47.019 
75948 
60.956 

33 
61 
89 
47 
75 
61 
47 
15 
61 
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friction coefficient were found to be good only provided the number of data stations was at least 
equal to the number of nodes. To ascertain whether a corresponding property holds for the 
present two-dimensional case, a series of tests was made with decreasing number of data points. 
The same parameter functions and starting guesses were used as in the last described tests. 

Table I1 gives the results obtained for four nodes with four, three, two and one data point. It is 
seen that, in contrast to the one-dimensional case, there is very little increase in the mean error of 
the estimates as the number of data stations is reduced from four to two. It is only when the 
number of stations is reduced to one that the estimates become unreliable. 

The corresponding results for five and nine nodes are summarized, respectively, in Tables I11 
and IV. In these tables, only the mean errors in the estimates of k and h are given. It is seen that for 
five nodes, good estimates are obtained using three or more data stations, but with two or one, the 
errors become very large. For nine nodes, reliable estimates are obtained with six or more data 
stations, but not with five. 

In the case of linear bottom friction with a single frequency solution, there are precisely two 
pieces of information contained in the values of surface elevations at each data station, namely the 
amplitude and phase. The result found by Das and Lardner,24 that the total number of nodal 
parameter values to be estimated should not exceed twice the number of data stations, was 
therefore no surprise. The fact that these authors found a similar result for quadratic friction was 
somewhat surprising, and was ascribed by them to the relative weakness of the second harmonic 
generated by the non-linear friction term. 

It is clear from Tables 11-IV that, in the present two-dimensional problem, sufficient informa- 
tion is contained in the higher harmonics to raise the ratio, R,  of the number of nodal parameter 
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Table 11. Parameter estimations with four nodes and four, three, two and one data point. The upper half of 
the table contains estimates of k x lo5 and the lower half those of h 

Node True D = 4  

2 2 
16 2 
16 16 
2 16 

Mean error 
2 2 

16 2 
16 16 
2 16 

Mean error 
No. of iterations 
Initial value of F 
Final value of F 

014 
0.28 
0.42 
0.28 

33 
61 
89 
61 

0.14006 
027996 
0.42002 
0.27989 
OooOo6 

3 3.002 
60.992 
88.999 
60.995 
0004 

58 
0.48 x lo-'  
0.25 x lo-* 

~ ~~~ ~ ~~ 

D = 3  D = 2  D = l  

0.1 401 3 0.13997 0.13796 
0.27994 028016 0.23432 
0.42004 0.42016 043178 
0.27979 0.27988 0.26896 
O~Oooll 000012 0.01764 

33.000 33..003 33.053 
61-000 61-001 58.696 
88.986 88.984 85.831 
61.001 60.997 62.888 
0.004 0006 1.856 

63 65 44 
0.42 x lo-'  0.53 x lo-' 0.26 x lo-' 
0.23 x lo-' 015 x 10-8 0.16 x 

Table 111. Mean errors in estimates of the parameters ( k  x lo5 and h) with five nodes and five, four, three, 
two and one data point 

D = 5  D = 4  D = 3  D = 2  D = l  
~ 

~ ~ ~~ ~~ 

Mean error in k 0*00003 OGOO 16 0.00015 0.049 13 004809 
Mean error in h 0.0 12 0.0 14 0.017 4.921 8153 
No. of iterations 70 78 85 57 59 
Initial value of F 0 . 1 3 ~  10' 0 . 7 2 ~  lo-'  0.11 x 10' 0 . 5 4 ~  lo- '  0 - 4 9 ~  lo-'  
Final value of F 0.18 x lo-' 0.13 x 0.73 x lo-' 0.11 x lo-' 0.31 x 

Table IV. Mean errors in estimates of the parameters (k x lo5 and h) with nine nodes and decreasing 
number of data points 

~~~ ~ ~ 

D=24 D = 8  D = 7  D=6  D = 5  

Mean error in k 000122 0.002 1 1 000399 0.00304 0.01784 
Mean error in h 003 1 0.225 OI30 0127 1-129 
No. of iterations 118 112 101 127 132 
Initial value of F 0.22 x 10' 0.15 x 10' 0.13 x 10' 0.13 x 10' 013 x 10' 
Final value of F 0.39~10-7 043x10-7 061x10-7 0 2 5 x 1 0 - ~  o-16x10-6 

values estimated to the number of data stations above the value two. For four nodes, R is four, 
and a ratio of four is also consistent with the results in Table 111. But for nine nodes, R is less than 
four, so we must conclude that the second harmonic does not carry the full information of 
independent amplitude and phase at each data station, at least when the number of nodes is large. 

If this argument is correct, we should expect that R would rise if the solution contains more 
than one fundamental frequency. We have, therefore, repeated some of the estimates with the 
open-boundary condition changed to [i, 16 = sin(ojAr) + sin(3ojAr). Some of the critical results 
are given in Table V, where again only the mean errors in the parameter estimates are given. 
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Table V. Mean errors in estimates of the parameters (k x lo5 and h) with various numbers of nodes and data 
points for boundary condition containing two frequencies 

Four nodes Five nodes Nine nodes 
D=l D = 2  D = l  D = 4  D = 3  

Mean error in k 0@0052 O*OoOlO 0.08005 0~00102 0.0097 1 
Mean error in h 0.024 0.003 3.615 0.0 12 1.073 
No. of iterations 82 82 m i  105 110 
Initial value of F 0.26 x 10' 0.94 x lo-' 0.89 x lo-' 0.12 x 10' 0.13 x 10' 
Final value of F 0.21 x lo-' 046 x lo-' 029 x lo-' 098 x lo-' 016 x 1W6 

For four nodes good estimates are now obtained with a single node, whereas with the 
monofrequency boundary input they were not (see Table 11). For five nodes, good estimates are 
obtained now with two data stations, but not with one. For nine nodes good estimates are 
obtained with four data stations, but not with three. 

With the chosen boundary condition, the quadratic friction generates two second harmonics 
and one independent combination frequency at the lowest order, giving a total of five frequencies 
in the solution. So, one might anticipate a possible ratio as high as R = 10. The actual ratios 
achieved are R = 8 for four nodes, R = 5 for five nodes and R = 4.5 for nine nodes. This represents 
an improvement over the monofrequency case, but indicates that the harmonics are too weak to 
carry their full information. 

5. SUMMARY AND DISCUSSION 

A method has been described to estimate position-dependent parameters in a numerical tidal 
model by assimilating data from tide gauges. The method is based on an optimal control 
approach whereby a norm of the discrepancies between computed and measured values at the 
data stations is minimized, subject to the condition that the boundary value problem represented 
by the model equations is satisfied. The numerical algorithm we have used is a two-level leapfrog 
scheme, for which the adjoint scheme turns out to be a similar two-level leapfrog, but stepped 
backwards in time. We have tested two packages for the numerical optimization, the BFGS 
method contained in the CONMIN program of Shanno and Phua26 and Nash's truncated 
Newton pa~kage.~'  These programs performed equally successfully, though it might be anticip- 
ated that for larger numbers of parameters than we have tested the Nash program would perform 
better. 

The parameters estimated are the bottom friction coefficient and depth correction. Parameter 
functions are represented by finite element approximations; in the numerical tests we have made, 
piecewise linear approximations over triangular elements have been used. 

In test problems on a model region, the method has turned out to provide very accurate 
estimates of the parameters, provided the number of data stations is sufficiently large. Some 
deterioration in accuracy is found as the number of estimated nodal parameter values is 
increased. Unlike the corresponding results found earlier for one-dimensional channel we 
have found that reliable estimates can be obtained with fewer data stations than finite element 
nodes. For boundary conditions containing a single frequency, the ratio of the number of nodal 
parameter values that can be accurately estimated to the number of data stations decreases from 4 
for four nodes to 3 with nine nodes. For two independent frequencies in the boundary input, this 
ratio is 8 for four nodes, 5 for five nodes and 4.5 for nine nodes. 



326 S. K. DAS AND R. W. LARDNER 

These results indicate that for the problem investigated, a significant amount of information is 
carried by the higher harmonics. However, the amount is less than what might be expected from 
the amplitude and phase for the fundamentals and all the harmonics generated at the lowest 
order. Nevertheless, the results are very encouraging for practical application, since real tidal data 
contain a very large number of constituents, and one might anticipate that accurate parameter 
estimates can be obtained from relatively few tidal data stations. 
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